NGN Core Network

Next Generation Network

How far we've come

Yesterday Single-service Vertical Networks

Transport, Switching & Access Networks

Now
Multi-service Integrated Network

What is NGN?

- Services independent from underlying transport technologies
- Separation of
 - Access layer
 - Transport layer
 - Control layer
 - Service layer
- with Transport and Control layers shared by Access and Service layers
- Transport converging towards IP
- Multimedia services

- This brings to
 - NGN Phase 1 (BICN)
 - NGN Phase 2 (IMS)
 - → FMC
 - → Access independent
 - → Multimedia services
- ITU-T Y.2001

An MSC

Control Plane

User Plane

MSC's task:

- Call control
- Mobility management
- User traffic path establishment
- Invocation of IN services
- Charging
- User traffic switching
- Echo cancellation

NGN = Distributed architecture

NGN Core Network

MO call to PSTN

NGN Advantages

Dimensioning on demand

- MSC Servers according to number of subscribers
- MGw according to user traffic
- Flexibility to face traffic growth
- Investments optimization

Energy gains

- Foot print
 - old Monolithic MSC: 17.1 m²
 - new Monolithic MSC: 3.96 m²
 - MSC Server: 0.96 m²
 - MGw: 0.96 m²
- Power consumption
 - old Monolithic MSC: 15 000 W
 - MSC Server: 1 500 W
 - MGw: 2 000 W
- Air conditioning

« Local calls remain local »

 Local calls have to go up to the central MSC

- Local calls remain in the local MGw
 - Only national calls go from one MGw to another through the backbone

Bandwidth savings

